

# **GPS**

## **Quectel Cellular Engine**

**SiRF4 AGPS Application Notes** 

SiRF4\_AGPS\_AN\_V1.0





| <b>Document Title</b> | SiRF4 AGPS Application Notes |
|-----------------------|------------------------------|
| Revision              | 1.0                          |
| Date                  | 2011-08-05                   |
| Status                | Release                      |
| Document Control ID   | SiRF4_AGPS_AN_V1.0           |

#### **General Notes**

Quectel offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Quectel. The information provided is based upon requirements specifically provided for customers of Quectel. Quectel has not undertaken any independent search for additional information, relevant to any information that may be in the customer's possession. Furthermore, system validation of this product designed by Quectel within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

#### Copyright

This document contains proprietary technical information of Quectel Co., Ltd. Copying of this document, distribution to others, and communication of the contents thereof, are forbidden without permission. Offenders are liable to the payment of damages. All rights are reserved in the event of a patent grant or registration of a utility model or design. All specifications supplied herein are subject to change without notice at any time.

Copyright © Quectel Wireless Solutions Co., Ltd. 2011

SiRF4\_AGPS\_AN\_V1.0 -1-



## **Contents**

| Contents                  | 2 |
|---------------------------|---|
| 0. Revision history       | 3 |
| 1. What's CGEE?           | 4 |
| 1.1. Related documents    | 4 |
| 1.2. Abbreviations        | 4 |
| 2. How to use CGEE?       | 5 |
| 2.1. Reference design     | 5 |
| 2.2. Recommended EEPROM   |   |
| 3. How to implement CGEE? | 7 |
| 4. Test data of CGEE      |   |



## 0. Revision history

| Revision | Date       | Author               | Description of change |
|----------|------------|----------------------|-----------------------|
| 1.0      | 2011-08-05 | Crystal HE/Ree ZHANG | Initial               |

SiRF4\_AGPS\_AN\_V1.0 - 3 -



#### 1. What's CGEE?

GPS aided information that improves Time To First Fix (TTFF) and accuracy for a wide array of mobile devices with varying connectivity and performance characteristics is of critical importance to Location Based Services (LBS). SiRF technology provides a CGEE function to shorten the TTFF time especially in warm start mode by storing the ephemeris data in an external EEPROM.

The document describes how to use the AGPS also known as CGEE (Client Generated Extended Ephemeris) supported by SiRF starIV chipset. Shorter time for cold/warm start, particularly warm start only around 10 seconds, and faster positioning can be achieved by use of the CGEE. The stored ephemeris can be available within the next 3 days.

This document is written for SiRF4 ROM1.3 firmware.

#### 1.1. Related Documents

**Table 1: Related documents** 

| SN  | Document name    | Remark                    |
|-----|------------------|---------------------------|
| [1] | L20_AGPS_AN_V1.0 | L20 AGPS Application Note |

#### 1.2. Abbreviations

**Table 2: Abbreviations** 

| Abbreviation | Description                                   |  |
|--------------|-----------------------------------------------|--|
| CGEE         | Client Generated Extended Ephemeris           |  |
| GPS          | Global Positioning System                     |  |
| GGA          | GPS Fix Data                                  |  |
| GLL          | Geographic Position Latitude / Longitude      |  |
| GSA          | GNSS DOP and Active Satellites                |  |
| GSV          | GNSS Satellites in View                       |  |
| NMEA         | National Marine Electronics Association       |  |
| OSP          | One Socket Protocol                           |  |
| TTFF         | Time-To-First-Fix                             |  |
| UART         | Universal Asynchronous Receiver & Transmitter |  |
| VDOP         | Vertical Dilution of Precision                |  |



#### 2. How to Use CGEE?

#### 2.1. Reference Design

The functional schematic diagram of CGEE is shown in Figure 1.

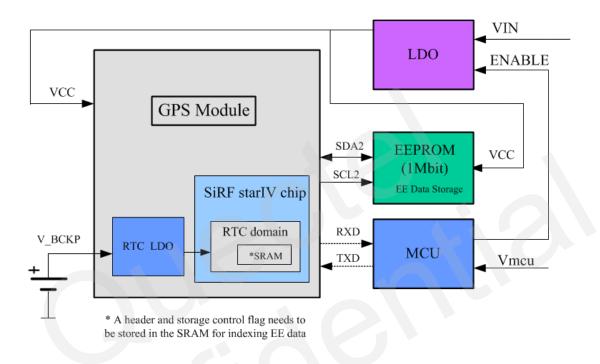



Figure 1: Functional schematic diagram of CGEE

The external 1Mbit EEPROM is used to store Client-Generated Extended Ephemeris (CGEE) data generated by SiRF starIV chip through I2C <sup>(1)</sup> port. Some information including control flag and header of EE Data are written in the SRAM which belongs to the RTC domain in the chip. When the module is restarted, this information will extract EE data from the EEPROM. V\_BCKP is used to supply power to the RTC domain, when VCC is removed; the information saved in the SRAM will be lost, and the CGEE data files stored in the serial EEPROM will not be accessed accordingly when the GPS module starts up next time. If the GPS module is powered on again, the system will generate new CGEE data flies which will be stored in the eternal EEPROM, and the corresponding new header and control flag will be written in the SRAM.

Thus, it is strongly recommended to use two separate voltage sources, VCC and V\_BCKP, in design. V\_BCKP should be kept alive as long as possible.

(1) The I2C port is open-drain output and supports up to 400kbps for accessing the EEPROM. The data line and clock line are internally pulled up to VCC by 2.2K resistors.

SiRF4\_AGPS\_AN\_V1.0 -5-



#### 2.2. Recommended EEPROM

Some types of 1Mbit EEPROM have been tested to be available. The type and manufacturer are listed in table 3.

The reference circuit of EEPROM is shown in Figure 2.

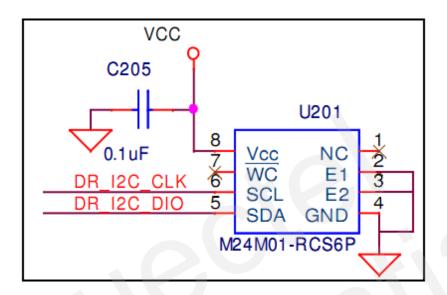



Figure 2: EEPROM reference circuit

**Table 3: Recommended EEPROM** 

| Manufacturer           | Part Number |
|------------------------|-------------|
| ST                     | M24M01      |
| Seiko Instruments Inc. | S-24CM01C   |
| Atmel                  | AT24C1024B  |

SiRF4\_AGPS\_AN\_V1.0 - 6 -



## 3. How to Implement CGEE?

For SiRF ROM 1.3 version, the default configuration is accessing EEPROM and CGEE will be in effect when the GPS module starts up, so the customer needn't do some procedures as SiRF ROM 1.0 version did.

If the customer wants to know how to implement CGEE using SiRF ROM1.0 version GPS module, you can refer to the documentation of L20\_AGPS\_AN\_V1.0.



## 4. Test data of CGEE

The following table shows the test data of CGEE function.

**Table 4: Test data of CGEE** 

| Warm Start | No CGEE (s) | With CGEE (s) |
|------------|-------------|---------------|
| 1          | 34          | 10            |
| 2          | 31          | 11            |
| 3          | 33          | 12            |
| 4          | 35          | 11            |
| 5          | 32          | 13            |
|            |             |               |
| Cold Start | No CGEE (s) | With CGEE (s) |
| 1          | 35          | 25            |
| 2          | 33          | 24            |
| 3          | 34          | 24            |
| 4          | 33          | 26            |
| 5          | 32          | 25            |

SiRF4\_AGPS\_AN\_V1.0 -8-





Shanghai Quectel Wireless Solutions Co., Ltd.

Room 501, Building 13, No.99, TianZhou Road, Shanghai, China 200233 Tel: +86 21 5108 6236

Mail: info@quectel.com